
Audit Report for Clipper - July 10, 2021

Summary
Audit Report prepared by Solidified covering the Clipper DEX smart contracts.

Process and Delivery
Three (3) independent Solidified experts performed an unbiased and isolated audit of the code
in several rounds. The debrief of round 1 took place on 29 March 2021.
The debrief of round 2 took place on 27 April 2021.
The rounds of fixes and small changes were concluded on 17 May 2021.

Audited Files

The source code has been supplied in the form of a GitHub repository:

https://github.com/shipyard-software/galleon-dex

Final Commit number: ef34ae95005c5b9d7b003fe4fa84f72bb561ba79

The scope of the audit was limited to the following files:

contracts
├── BlacklistAndTimeFilter.sol
├── GalleonDeposit.sol
├── GalleonEscapeContract.sol
├── GalleonExchangeInterface.sol
├── GalleonPool.sol
└── libraries

├── AggregatorInterface.sol
├── ApprovalInterface.sol
├── Sqrt.sol
└── UniERC20.sol

Intended Behavior
The smart contracts implement an automated market maker aimed at providing a decentralized
exchange.

https://github.com/shipyard-software/galleon-dex

Audit Report for Clipper - July 10, 2021

Code Complexity and Test Coverage
Smart contract audits are an important step to improve the security of smart contracts
and can find many issues. However, auditing complex codebases has its limits and a
remaining risk is present (see disclaimer).

Users of a smart contract system should exercise caution. In order to help with the
evaluation of the remaining risk, we provide a measure of the following key indicators:
code complexity, code readability, level of documentation, and test coverage.

Note, that high complexity or lower test coverage does equate to a higher risk.
Certain bugs are more easily detected in unit testing than a security audit and
vice versa. It is, therefore, more likely that undetected issues remain if the test
coverage is low or non-existent.

Criteria Status Comment

Code complexity Medium-High -

Code readability and clarity High -

Level of Documentation High -

Test Coverage Medium -

Test coverage report:
-------------------------------|----------|----------|----------|----------|----------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Lines
contracts/ | 81.73 | 45.45 | 61.76 | 80 | |
BlacklistAndTimeFilter.sol | 41.18 | 0 | 23.08 | 35 |... 65,69,73,77 |
GalleonDeposit.sol | 100 | 70 | 100 | 100 | |
GalleonEscapeContract.sol | 33.33 | 0 | 50 | 33.33 | 19,20 |
GalleonExchangeInterface.sol | 93.9 | 55 | 85.71 | 94.05 | 61,62,66,67,68 |
GalleonPool.sol | 73.97 | 40 | 62.86 | 72.5 |... 306,310,313 |
contracts/libraries/ | 92.31 | 83.33 | 100 | 92.86 | |
AggregatorInterface.sol | 100 | 100 | 100 | 100 | |
ApprovalInterface.sol | 100 | 100 | 100 | 100 | |
Sqrt.sol | 100 | 100 | 100 | 100 | |
UniERC20.sol | 92.31 | 83.33 | 100 | 92.31 | 39 |
contracts/mocks/ | 75 | 100 | 71.43 | 75 | |
MockOracle.sol | 66.67 | 100 | 50 | 66.67 | 20 |
MockToken.sol | 75 | 100 | 75 | 75 | 29 |
SqrtMock.sol | 100 | 100 | 100 | 100 | |

-------------------------------|----------|----------|----------|----------|----------------|
All files	82.11	51.28	65	80.6	

Audit Report for Clipper - July 10, 2021

Issues Found

Solidified found that the Clipper smart contracts contain no critical issues, 2 major
issues, 3 minor issues, in addition to 7 informational notes.

We recommend all issues are amended, while the notes are up to the team’s discretion,
as they refer to best practices.

Issue # Description Severity Status

1 Iterations over variable-sized data structure may
cause critical functions to fail if too many tokens
registered

Major Acknowledged

2 GalleonExchangeInterface.sol: some functions
can be blocked by a denial of service attack or
malfunctioning token

Major Acknowledged

3 GalleonPool.sol: Non-enforcement of ETH as
last element in the linked list may break escape
protection

Minor Resolved

4 GalleonPool.sol: Missing zero-checks Minor Acknowledged

5 UniERC20.sol: Functions
uniTransfer()/uniTransferFromSender() can
potentially fail when transferring ETH to a smart
contract

Minor Resolved

6 Consider using additional events Note Resolved

7 Use constants instead of magic numbers Note Resolved

8 Use modifier instead of copying require
constraints

Note Resolved

9 GalleonPool.sol: _escapeContract doesn't need
owner restriction

Note Resolved

10 GalleonExchangeInterface.sol: potential gas
optimization

Note Resolved

Audit Report for Clipper - July 10, 2021

11 GalleonExchangeInterface.sol: add check for
tradebility in _sync()

Note Acknowledged

12 GalleonDeposit.sol: Unnecessary gas
expenditure by declaring myDeposit as memory
instead of storage

Note Resolved

Audit Report for Clipper - July 10, 2021

Critical Issues

No critical issues have been found.

Major Issues

1. Iterations over variable-sized data structure may cause critical
functions to fail if too many tokens registered

The GalleonPool contract stores asset in a linked list. There are several functions that iterate
over these data structures:

GalleonPool.sol:
- removeToken()

- syncAll()

GalleonExchangeInterface.sol:
- withdraw()

- invariant()

If this data structure grows too large, due to many tokens being registered with the pool, these
iterations may hit the block gas limit, leading to the transactions always reverting.

Recommendation
Consider using a data model that does not require looping over variable-sized data structures. It
seems the linked list implementation is not really required to keep track of all tokens and
removing it would also provide significant gas savings.

Round Two Update
The team acknowledges this property. In this particular case, the iteration is considered
acceptable, since the smart contract will only be used for a limited number of assets. The
addition and removal of assets are operator-controlled.
Solidified recommends coding a maximum limit into the smart contract, in order to avoid
exceeding the safe limit accidentally.

Audit Report for Clipper - July 10, 2021

2. GalleonExchangeInterface.sol: some functions can be blocked
by a denial of service attack or malfunctioning token

Throughout the code, external calls are performed to registered tokens, for instance in
withdraw() and syncAndTransfer(). If an external token misbehaves by reverting, the whole
transaction will fail. This can be exploited by malicious tokens that revert to perform a denial of
service attack.

Recommendation
Consider token withdrawals to be performed individually and/or use try and catch clauses to
prevent transactions from failing completely.

Round Two Update
The team acknowledges this property. All tokens will be vetted by the operators before adding
them.

Minor Issues

3. GalleonPool.sol: Non-enforcement of ETH as the last element
in the linked list may break escape protection

The escape() function protection relies on assuming the ETH token entry will be inserted first.
However, there is nothing to enforce in the codebase that really is placed at this point in the data
structure by the admin team. If this assumption is violated accidentally or on purpose, the
protection mechanism in the escape() function will not work.

Recommendation
Consider including checks to ensure that ETH is inserted as the first element.

Round Two Update
This issue has been resolved through refactoring.

Audit Report for Clipper - July 10, 2021

4. GalleonPool.sol: Missing zero-checks

The functions modifyDepositContract(), modifyApprovalContract() and
modifyExchangeInterfaceContract() do not check for address(0). This may cause
protocol malfunctioning if these functions are called with zero arguments.

Recommendation
Consider adding zero-checks.

Update
Team Response: “Acknowledged that calls with zero values could cause disruption. These
functions are only to be called by admin users. We assume that admins will not be malicious in
their calls.”

5. UniERC20.sol: Functions
uniTransfer()/uniTransferFromSender() can potentially fail when
transferring ETH to a smart contract

Function uniTransfer() & uniTransferFromSender() call transfer() when sending ETH to
to/sendTo, which only forwards 2300 gas. In cases where sendTo address is a smart contract
whose fallback function consumes more than 2300 gas, the call will always fail. This will have
the side effect of potentially preventing smart contracts (e.g. DAOs) from receiving transfers.

For a more in-depth discussion of issues with transfer() and smart contracts, please refer to
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-no

w/

Recommendation
Replace instances of transfer() with call().

Update
Resolved

https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/
https://diligence.consensys.net/blog/2019/09/stop-using-soliditys-transfer-now/

Audit Report for Clipper - July 10, 2021

Informational Notes

6. Consider using additional events

It is good practice to emit an event when updating key protocol parameters or adding an asset.
The current implementation does not use many event types. For instance, no events are emitted
when the fees are changed or a new asset is added.

Recommendation
Consider adding event types

Update
Resolved

7. Use constants instead of magic numbers

Much of the code has hard-coded numbers instead of declared constants. For example, the
multiplier value, the token decimals, and the number of seconds in ActivateRemoval.

Recommendation
Consider using declared top-level constants to replace the magic numbers.

Update
Resolved

8. Use modifier instead of copying require constraints

In many places, the code repeats certain access constraints as pre-conditions for functions. It
would be cleaner to use modifiers for this instead of copying the constraint.

For instance in the following functions:

- recordDeposit

- recordUnlockedDeposit

- syncAll

- sync

Audit Report for Clipper - July 10, 2021

- transfer

- syncAndTransfer

- swapAndBurn

Recommendation
Consider using modifiers.

Update
Resolved

9. GalleonPool.sol: _escapeContract() doesn't need owner
restriction

This function is just a view function so it does not require a calling restriction, since it changes
no state.

Recommendation
Consider removing the restriction.

Update
Resolved

10. GalleonExchangeInterface.sol: potential gas optimization

The function invariant() could benefit from CALL reduction
Creating a getTokenDetails(address token) function that returns a tuple of (oracle,
marketShare, lastBalance) for a token would reduce the CALL and stack overhead costs
incurred each time the contract calls out to GalleonPool.

Recommendation
Consider adding this function to optimize gas.

Update
Resolved

Audit Report for Clipper - July 10, 2021

11. GalleonExchangeInterface.sol: add check for tradebility in
_sync()

The function _sync() relies on a nested check in function balancesAndMultipliers() to
validate input parameters:

require(isTradable(inputToken) && isTradable(outputToken), "Galleon:

Untradable asset(s)");

This does not favor the readability and maintainability of the code.

Recommendation
Consider placing this check in _sync()

Update
Team Response: “Acknowledged. Deemed not worth gas expenditure for a "double check"
(swaps need to start with a tradability check)”

12. GalleonDeposit.sol: Unnecessary gas expenditure by
declaring myDeposit as memory instead of storage

Function unlockVestedDeposit() assigns deposits[msg.sender] to a memory variable,
which results in the value being copied from the contract’s storage to memory, wasting
unnecessary gas.
Function deposit() also has the same issue with curDeposit.

Recommendation
Declare myDeposit as a storage variable so that no unnecessary copying takes place.

Update
Resolved

Audit Report for Clipper - July 10, 2021

Disclaimer

Solidified audit is not a security warranty, investment advice, or an endorsement of

Clipper or its products. This audit does not provide a security or correctness guarantee

of the audited smart contract. Securing smart contracts is a multistep process, therefore

running a bug bounty program as a complement to this audit is strongly recommended.

The individual audit reports are anonymized and combined during a debrief process, in

order to provide an unbiased delivery and protect the auditors of Solidified platform from

legal and financial liability.

Solidified Technologies Inc.

