
July 8th 2021 — Quantstamp Verified

Clipper

This smart contract audit was prepared by Quantstamp, the protocol for securing smart contracts.

Executive Summary

Type Cryptocurrency Exchange

Auditors Sebastian Banescu, Senior Research Engineer
Fayçal Lalidji, Security Auditor
Joseph Xu, Technical R&D Advisor

Timeline 2021-04-19 through 2021-05-25

EVM Berlin

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification New Invariants for Automated Market Making
README.md

Documentation Quality Medium

Test Quality Low

Source Code
Repository Commit

galleon-dex 0dff47e

Total Issues 20 (8 Resolved)

High Risk Issues 2 (1 Resolved)

Medium Risk Issues 8 (4 Resolved)

Low Risk Issues 3 (0 Resolved)

Informational Risk Issues 5 (2 Resolved)

Undetermined Risk Issues 2 (1 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/shipyard-software/galleon-whitepaper/blob/main/paper.pdf
https://github.com/shipyard-software/galleon-dex/blob/main/README.md
https://github.com/shipyard-software/galleon-dex
https://github.com/shipyard-software/galleon-dex/tree/0dff47ee8c15a6375e93365efa4dd3f4617201cb

Summary of Findings

Quantstamp has performed a security audit of the Galleon DEX smart contracts and has determined 20 issues ranging from High to Informational severity and 2 issues have an
Undetermined severity level. The exchange pool has an above-average level of owner privileges, one of which has been marked as a High severity issue. Another concerning issue regards
the low number of tests in the test suite. In addition to the aforementioned issues, 8 best practice deviations were detected. We recommend fixing all of these issues before deploying the
code in production.

Quantstamp has performed a reaudit according to commit hash and the official responses obtained from the development team. The report has been
updated accordingly.
Update after reaudit: 72f2dad

ID Description Severity Status

QSP-1 The Galleon DEX Owner May Arbitrarily Mint LP Tokens High Mitigated

QSP-2 Insuficient Test Suite High Unresolved

QSP-3 Loss Of Funds If Given Procedures For Deposits & Swaps Not Followed Medium Acknowledged

QSP-4 Loss Of Funds During Withdrawals Medium Acknowledged

QSP-5 Liquidity Provider Fees Medium Fixed

QSP-6 Possibly Incorrect Invariant Check Medium Fixed

QSP-7 Oracle Prices Used Could Be Stale Or Manipulated Medium Fixed

QSP-8 ERC20 Compliance Medium Fixed

QSP-9 Transfer/Transaction Mechanism Not Required In All Contracts Medium Acknowledged

QSP-10 Missing OFAC Blocked Wallets Medium Acknowledged

QSP-11 Privileged Roles and Ownership Low Acknowledged

QSP-12 Existing Vested Deposits May Get Locked Again Low Acknowledged

QSP-13 Missing Input Validation Low Acknowledged

QSP-14 Strong Assumption About Number of Decimals Returned by Oracle Informational Fixed

QSP-15 Important State Changes Are Difficult To Monitor Informational Fixed

QSP-16 Ambiguous Naming Informational Acknowledged

QSP-17 PLP Compliance Informational Acknowledged

QSP-18 Custom Square-Root Function Does Not Work For Input Value 2 Informational Acknowledged

QSP-19 Blocked Addresses Can Still Deposit & Withdraw Undetermined Fixed

QSP-20 The Mints 10x More TokensGalleonPool.constructor() Undetermined Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Findings

QSP-1 The Galleon DEX Owner May Arbitrarily Mint LP Tokens

Severity: High Risk

MitigatedStatus:

File(s) affected: GalleonPool.sol

The owner of the exchange pools may perform many privileged actions as described in the "Privileged Roles and Ownership" finding from this report. However, one privilege that
stands out is that of arbitrarily minting LP tokens. Most of the other privileges are common in DeFi applications, but the arbitrary LP token minting makes this a High severity issue, because of the
impact it may have on end-users holding LP tokens. By minting a large amount of LP tokens, the owner could withdraw a large number of deposited tokens from the Galleon pool, leaving
depositors short-handed. This scenario is not necessarily assuming a malicious owner; it could very well be the case that the private key of the owner is stolen and the attacker does this. From
the existing documentation and code comments, it is not clear to the auditors which use-case this arbitrary minting of LP tokens would be needed for.

Description:

Remove function.Recommendation: GalleonPool.mint()

From dev team:Update:

"While the ability to mint tokens is important and will not be removed, our code now limits mint calls to only once every five days, with a maximum mint amount of 5% of the token
base."

It is unclear why pool owners are able to mint. Max 5% minting every 5 days annualized is max 3522%.

QSP-2 Insuficient Test Suite

Severity: High Risk

UnresolvedStatus:

Branch coverage of some of the core contracts in this project is too low. For example, the branch coverage for the is 40% and 55% for the
. This means that there are several potential code execution flows, which are not tested to work as expected and could therefore work differently than expected.

Description: GalleonPool
GalleonExchangeInterface

We strongly recommend writing a more comprehensive test suite in order to ensure that all the functionality and use-cases of this project are properly tested. Additionally, we
recommend testing using and adding a few ERC20 tokens which do not have typical behaviour such as USDC and USDT.
Recommendation:

Mainnet forking

QSP-3 Loss Of Funds If Given Procedures For Deposits & Swaps Not Followed

Severity: Medium Risk

AcknowledgedStatus:

, ,File(s) affected: GalleonDeposit.sol GalleonExchangeInterface.sol GalleonPool.sol

Users need to process swaps (deposits) by first transferring ETH or one of the supported ERC20 tokens to the liquidity pool contract and then calling the proper API functions on the
exchange interface (the function in the contract), which provides the proper output after re-calculating the invariant based on the actual liquidity pool contract
balances. Note that this makes the DEX susceptible to front-running or transaction order sequencing by validators.

Since the transfer and the API calls are separate from each other, users must ensure that the strict procedure is followed to achieve the correct, intended output. Transaction ordering also
matters so users may need to complete the transfer and the API call in the same tx. Otherwise, end-user funds could be stolen by malicious actors. For example, malicious actors could perform
front-running attacks if the end-user uses an EOA to directly deposit funds before exchanging. There are currently few safeguards against users interacting with the smart contracts directly and
there are also no features that can facilitate these actions to be processed in the same tx.

For example, the PLP API functions implemented and the functions implemented in are allowed to be called by any address or contract, making
front-running attacks accessible in case of misuse of the transfer mechanism by a contract (bad implementation) or an EOA. The vulnerable functions use the same naming for both contracts
and are listed below:

Description:
deposit() GalleonDeposit

GalleonPool GalleonExchangeInterface

function sellTokenForToken(address inputToken, address outputToken, address recipient, uint256 minBuyAmount, bytes calldata auxiliaryData) external returns (uint256 boughtAmount);
function sellEthForToken(address outputToken, address recipient, uint256 minBuyAmount, bytes calldata auxiliaryData) external payable returns (uint256 boughtAmount);
function sellTokenForEth(address inputToken, address payable recipient, uint256 minBuyAmount, bytes calldata auxiliaryData) external returns (uint256 boughtAmount);

Below are certain scenarios that may lead to incorrect outputs:Exploit Scenario:

An incorrect amount of LP tokens might be given on deposit if two users deposit into the pool simultaneously, with the first user calling
before the second one. In this case, the first user would receive the LP tokens equivalent to both deposits and the second user would receive no LP tokens.

• GalleonDeposit.deposit()

An incorrect amount of tokens might be swapped if two users deposit the same tradable asset into the pool and one user makes the API call before the other.•

Provide a smart contract or functions to facilitate the transfer and API call in the same tx. Communicate the risks associated with this design clearly to the users through
proper documentation. This includes informing third-party contract developers about the importance of sending the tokens and calling the required functions in a single transaction.
Recommendation:

From dev team:Update:

"We acknowledge this issue. We expect most users will interact with our exchange through an Aggregator or through our website."

QSP-4 Loss Of Funds During Withdrawals

Severity: Medium Risk

AcknowledgedStatus:

File(s) affected: GalleonExchangeInterface.sol

The function allows withdrawals as long as the invariant does not decrease too much as the result of the withdrawal. The
parameter of output amount needs to be specified by the user, but the user may miscalculate and withdraw too few tokens in exchange for the LP tokens. Notably, the function allows
withdrawals with , which would lead to the user not receiving any assets in exchange for the LP tokens.

Description: GalleonExchangeInterface.withdrawInto()

outputTokenAmount = 0

Add basic checks in the function to revert if the is too small relative to the difference in the invariant.Recommendation: withdrawInto() outputTokenAmount

From dev team:Update:

"We are fine with users inputting the amount they would like back and acknowledge it could result in a potential loss. In practice, we expect users to perform the calculation offline
and then add in a modest buffer. The alternative (on-chain binary search for the invariant) was deemed too gas-expensive."

https://hardhat.org/guides/mainnet-forking.html

QSP-5 Liquidity Provider Fees

Severity: Medium Risk

FixedStatus:

File(s) affected: GalleonExchangeInterface.sol

The fee logic inside the and functions will always leave assets in the contract, meaning that the last user to withdraw his asset will see his
calculated fees being left out in the contract. Depending on the amount left, an attacker can deposit an extremely small amount of tokens (compared to the left out fees) and withdraw the
majority of the remaining asset in the pool.

Description: withdrawInto() withdraw()

Change the fee mechanism such that fees are correctly paid upon withdrawals. Clarify why fees are applied to the LPs in end-user-facing documentation.Recommendation:

QSP-6 Possibly Incorrect Invariant Check

Severity: Medium Risk

FixedStatus:

File(s) affected: GalleonExchangeInterface.sol

On L197, the function computes the using , which has been updated after
LP tokens have been burned through . Based on the code comments and the implementation of , it seems like the
correct invariant check needs to be using the initial fully diluted supply before it is updated.

Description: withdrawInto() invariantFractionIBurned theExchange.fullyDilutedSupply() amount
GalleonPool.swapBurn() GalleonExchangeInterface.withdraw()

Double-check the invariant condition to clarify if it should be calculated using the initial fully diluted supply or the updated fully diluted supply.Recommendation:

QSP-7 Oracle Prices Used Could Be Stale Or Manipulated

Severity: Medium Risk

FixedStatus:

, ,File(s) affected: libraries/AggregatorInterface.sol GalleonExchangeInterface.sol GalleonPool.sol

The and the functions use the price from the call to the
of Chainlink. This approach is vulnerable to price manipulation and stale prices according to the Chainlink documentation:

Description: GalleonPool.findBalanceAndMultiplier() GalleonExchangeInterface.invariant() deprecated API
function oracle.latestAnswer()

1. : "if answeredInRound < roundId could indicate stale data."under current notifications

2. : "A timestamp with zero value means the round is not complete and should not be used."under historical price data

We recommend using the function as recommended by the and adding require statements that check for the
aforementioned conditions in all the occurrences of those functions, while also checking the and values to check if the price returned by the oracle is stale since
Chainlink aggregators rely on third party project to be updated. Develop contingency plans in the case of oracle failure (pause swaps, use a fall-back oracle, etc.)

Recommendation: latestRoundData() Chainlink documentation
startedAt updatedAt

Transactions will revert if the oracle is stale due to the statement in .Update: require() SafeAggregatorInterface.safeUnsignedLatest()

QSP-8 ERC20 Compliance

Severity: Medium Risk

FixedStatus:

File(s) affected: GalleonPool.sol

and assume that the listed tokens' decimals are always lower than 18 decimals. Such implementation will prevent
listing tokens with higher decimals since the transactions will throw due to underflow. Please note that the does not require the decimals value to be fixed or lower than any
specific value.

Description: GalleonPool.upsertAsset GalleonPool.getMarketShare
ERC20 standard

The developers must be compliant with the ERC20 standard to avoid any future issues.Recommendation:

QSP-9 Transfer/Transaction Mechanism Not Required In All Contracts

Severity: Medium Risk

AcknowledgedStatus:

The 0x requires only the following function to handle direct transfers to :Description: PLP GalleonPool

function sellTokenForToken(address inputToken, address outputToken, address recipient, uint256 minBuyAmount, bytes calldata auxiliaryData) external returns (uint256 boughtAmount);
function sellEthForToken(address outputToken, address recipient, uint256 minBuyAmount, bytes calldata auxiliaryData) external payable returns (uint256 boughtAmount);
function sellTokenForEth(address inputToken, address payable recipient, uint256 minBuyAmount, bytes calldata auxiliaryData) external returns (uint256 boughtAmount);

However, the same mechanism is used by where it is not required by 0x since the 0x protocol will not interact with any function other than the functions stated
above.

GalleonPool.deposit()

We strongly recommend using the safest way possible to handle user assets, in this case, for any other function that does not require any
compatibility with the PLP API.
Recommendation: approve/transferFrom

From the dev team:Update:

We prefer the "deposit, then check" modality for its simplicity and modularity. We acknowledge that users interacting with our contracts outside of our own onramps or the onramps
of trusted DEX aggregator partners may lose funds if they behave carelessly.

QSP-10 Missing OFAC Blocked Wallets

Severity: Medium Risk

AcknowledgedStatus:

https://docs.chain.link/docs/deprecated-aggregatorinterface-api-reference/#latestanswer
https://docs.chain.link/docs/deprecated-aggregatorinterface-api-reference/#latestanswer
https://docs.chain.link/docs/developer-communications#current-notifications
https://docs.chain.link/docs/historical-price-data#solidity
https://docs.chain.link/docs/get-the-latest-price/
https://eips.ethereum.org/EIPS/eip-20#decimals
https://protocol.0x.org/en/latest/advanced/plp.html#trading-with-a-liquidity-provider

File(s) affected: BlacklistAndTimeFilter.sol

The blocks 3 OFAC addresses. However, there are other addresses listed by OFAC which are not included. For example
indicates 2 different Ethereum addresses which are not listed:
Description: BlacklistAndTimeFilter.constructor() this post

1. 0xd882cfc20f52f2599d84b8e8d58c7fb62cfe344b

2. Also, the current version of the contains 23 Ethereum addresses (some of which are duplicates), many
of which are not included in the .
0x7F367cC41522cE07553e823bf3be79A889DEbe1B OFAC SDN List

BlacklistAndTimeFilter.constructor()

While it is possible to block new addresses post-deployment, using the function, it is our understanding that the intention of
the developers is to include all addresses on the OFAC SDN List in the . Therefore, we recommend adding all unique addresses from that
document in the constructor.

Recommendation: BlacklistAndTimeFilter.blockAddress()
BlacklistAndTimeFilter.constructor()

From the dev team:Update:

The contract is intended to be a demonstration implementation of the approval interface for testing. We will be sure to block all listed OFAC wallets prior to
launch.

BlacklistAndFilter

QSP-11 Privileged Roles and Ownership

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: GalleonPool.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart contract. The of the
contract is allowed to:
Description: owner owner GalleonPool

1. Mint any amount of Galleon Pool Tokens (GLNPL) at any time to any address.

2. Transfer any amount of any token (including ETH) from the GalleonEscapeContract

3. Add and/or remove ERC20 tokens to the asset set. Removing ERC20 tokens has a 5 day period in which end-users can withdraw their deposits in that token. Afterward
withdrawing a deposit in that token is no longer possible by an end-user.

4. Withdraw the total balance of an ERC20 token that has been removed from the pool.

5. Withdraw the total balance of ETH from the pool only if there are no ERC20 tokens in the .assetSet

6. Change the address of the exchange interface contract to any address at any time.

7. Change the address of the deposit contract to any address at any time.

8. Change the triage address to any address at any time.

9. Change the approval contract of the contract to any address at any time.GalleonExchangeInterface

10. Change the swap fee in the contract to any value below (representing 5%).GalleonExchangeInterface 500

The of the contract is allowed to set the address once.owner GalleonExchangeInterface GalleonPool theExchange
The contract owner can:BlacklistAndTimeFilter

Change the pool address.•

Allow and deny swaps for the entire pool.•

Allow and deny deposits to the entire pool.•

Block and unblock address.•

Modify the minimum deposit days.•

Clearly document all the different user roles, capabilities, and impact of those capabilities in end-user-facing documentation.Recommendation:

From the dev team:Update:

We acknowledge that the of the contract does, indeed, wield a great deal of power.owner

QSP-12 Existing Vested Deposits May Get Locked Again

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: GalleonDeposit.sol

If a user does not first unlock a fully vested deposit and makes a new deposit, the vested deposits will get locked up along with the new deposit.Description:

One example of how this issue would affect users:Exploit Scenario:

1. Alice deposits 1 ETH using .GalleonDeposit.deposit(7 days)

2. After 1 week, Alice's 1 ETH deposit has vested and she can unlock the pool tokens.

3. However, Alice deposits another 2 ETH using before calling .GalleonDeposit.deposit() GalleonDeposit.unlockVestedDeposit()

4. Alice's vested pool tokens corresponding to the 1 ETH deposited a week prior is locked again and cannot be withdrawn since existing is
updated based on the timestamp of the new 2 ETH deposit.

deposits[address(alice)]

Consider adding a check to prevent deposits before unlocking a vested deposit, or automatically unlocking and minting vested LP tokens upon new deposits.Recommendation:

This behavior is intended. To avoid such issues users should always unlock deposits before making a new deposit.Update:

QSP-13 Missing Input Validation

Severity: Low Risk

AcknowledgedStatus:

,File(s) affected: GalleonPool.sol GalleonExchangeInterface.sol

https://home.treasury.gov/policy-issues/financial-sanctions/recent-actions/20200916
https://www.treasury.gov/ofac/downloads/sdnlist.pdf

The following instances of this vulnerability were identified:Description:

1. does not validate the input parameter value.GalleonPool.constructor() initialExchangeInterface

2. does not validate the input parameter value.GalleonPool.upsertAsset() marketShare

3. does not validate the input parameter value.GalleonPool.modifyExchangeInterfaceContract() newContract

4. does not validate the input parameter value.GalleonPool.modifyDepositContract() newContract

5. does not validate the input parameter value.GalleonPool.modifyTriage() newTriageAddress

6. does not validate if the and addresses are different.GalleonPool.balancesAndMultipliers() inputToken outputToken

7. does not validate if the and addresses are different. It also does not check if the is different
from or if the is higher than .
GalleonPool.syncAndTransfer() inputToken outputToken recipient

address(0) amount 0

8. does not validate any of its input parameters.GalleonExchangeInterface.constructor()

9. does not validate if the complies with .GalleonExchangeInterface.setPoolAddress() poolAddress GalleonPool

Recommendation:

1. Use to check if complies with the .EIP-165 initialExchangeInterface GalleonExchangeInterface

2. Check if the value is between and . Also document how many decimal digits the value is represented with. It is unclear if or if
.

[Fixed] marketShare 0 100% 100 == 100%
10000 = 100%

3. Use to check if complies with the .EIP-165 newContract GalleonExchangeInterface

4. Use to check if complies with the .EIP-165 newContract GalleonDeposit

5. Check that is different than .newTriageAddress address(0)

6. Check that the and addresses are different.inputToken outputToken

7. Check that the and addresses are different. Check that is different from and the is higher than .inputToken outputToken recipient address(0) amount 0

8. Use to check if complies with the .EIP-165 initialApprovalContract ApprovalInterface

9. Use to check if complies with the .EIP-165 poolAddress GalleonPool

From dev team:Update:

Some additional validations have been added, but others will not be fixed:

Adding EIP-165 checks for functions that will only be called by admins is, we believe, superfluous•

is an inverse weighting calibrated so that 100 = ETH, 50 = twice the weight of ETH, and 200 = half the weight of ETH.• marketShare

Checking to see if and are different addresses is unnecessary.• inputToken outputToken

QSP-14 Strong Assumption About Number of Decimals Returned by Oracle

Severity: Informational

FixedStatus:

File(s) affected: GalleonPool.sol

We understand that the intention of Galleon DEX is to use ETH as the numeraire asset and we can also see that in the current list of Chainlink oracles all oracles of the form
return 18 decimals. However, there is no guarantee that this will be the case for such Chainlink oracles in the future. The require statement on L151 in :

prevents adding Chainlink price feed contracts which do not have exactly 18 decimals digits. One Chainlink price
feed contract which has a value different from 18, namely 8 decimals is the . Many other Chainlink price feed contracts, which do not have 18 decimals can be found

.

The code inside assumes that the function of the Chainlink price feed contract always returns a result with 18 decimal
digits. However, this is not guaranteed as described above. We also refer to the where the following question and answer are listed:

Description:
<ERC20>/ETH GalleonPool.sol
require(oracle.decimals()==18, "Galleon: Invalid oracle");

ETH/USD price feed contract
here

GalleonPool.findBalanceAndMultiplier() latestAnswer()
FAQ section of the Chainlink documentation

Why is latestAnswer reported at 8 decimals for some contracts, but for other contracts it is reported with 18 decimals?
For crypto quotes, 18 decimals is typically used because they usually require more precision. For FX quotes, 8 decimals are used because that is the precision data sources typically
report them at.

If at some point in time oracles that return a number of decimals different than 18 will be needed and included, it will have a significant impact on all trading activities.

We recommend accepting oracles with any number of decimals and using a state variable that keeps track of how many decimals each oracle returns. This state variable
must then be used to adjust the value of (and all other values that represent token amounts) according to the number of decimal digits returned by the oracle.
Recommendation:

weiPerInput

QSP-15 Important State Changes Are Difficult To Monitor

Severity: Informational

FixedStatus:

File(s) affected: GalleonPool.sol

The pool smart contract allows changes to the exchange interface, deposit contract, and the triage address. However, the functions for these changes do not emit
events.
Description: GalleonPool

Consider emitting events in functions , , and .Recommendation: modifyExchangeInterfaceContract() modifyDepositContract() modifyTriage()

QSP-16 Ambiguous Naming

Severity: Informational

AcknowledgedStatus:

File(s) affected: UniERC20.sol

does not transfer from the sender when the token address is equal to zero (Ether address) this can be subject to implementation error where
tokens will be transferred from the wrong address. As an example uses but it is not sending ether
Description: UniERC20.uniTransferFromSender

GalleonExchangeInterface.sellEthForToken UniERC20.uniTransferFromSender

https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165
https://etherscan.io/address/0xb022E2970b3501d8d83eD07912330d178543C1eB#readContract
https://docs.chain.link/docs/ethereum-addresses/
https://docs.chain.link/docs/faq/

from the instead it is sending ether from contract to the .msg.sender GalleonExchangeInterface GalleonPool

We recommand to use as best practice and change implementation.Recommendation: UniERC20.uniTransfer UniERC20.uniTransferFromSender

From dev team:Update:

Since there's no such thing as "transferring from" with ETH, the analogue to "transferring from" is forwarding on whatever is attached to the transaction as . The transfer from
the to the Pool contracts is intentional and is designed to handle ETH swaps.

value
ExchangeInterface

QSP-17 PLP Compliance

Severity: Informational

AcknowledgedStatus:

File(s) affected: GalleonExchangeInterface.sol

The following functions implemented in are not compatible with the PLP interface and yet the declarations of the same functions are used:Description: GalleonExchangeInterface

function sellTokenForToken(address inputToken, address outputToken, address recipient, uint256 minBuyAmount, bytes calldata auxiliaryData) external returns (uint256 boughtAmount);
function sellEthForToken(address outputToken, address recipient, uint256 minBuyAmount, bytes calldata auxiliaryData) external payable returns (uint256 boughtAmount);
function sellTokenForEth(address inputToken, address payable recipient, uint256 minBuyAmount, bytes calldata auxiliaryData) external returns (uint256 boughtAmount);

Depending on which address is going to be added to 0x, or , the functions in the latter contract will not handle the asset sent to the contract by
the 0x protocol correctly.

GalleonPool GalleonExchangeInterface

We recommend changing the function naming in to be different than the PLP API, to avoid any possible misuse.Recommendation: GalleonExchangeInterface

From dev team:Update:

We don't see a reason to change these function names. Our own router code will operate directly on the contract.ExchangeInterface

QSP-18 Custom Square-Root Function Does Not Work For Input Value 2

Severity: Informational

AcknowledgedStatus:

File(s) affected: Sqrt.sol

According to the code comment on L8 and one of the unit tests, the function does not work correctly for input value , because instead of returning , it returns .
This function should typically truncate the decimals of the square root result for any given number. In the case of input value the square root result is incorrectly returned as being equal to .
Since this function is involved in invariant computations both during deposits and withdrawals it might affect the computations to some extent. The reason why we classify the severity of this
issue as Informational is that it is unlikely to ever occur in the current version of the code since we can expect the function to operate on number orders of at least and the

function to operate on number orders of . Those are the only 2 functions where the function is currently being called.

Description: Sqrt.sqrt() 2 1 2
2 2

invariant() 1e18
invariantSwap() 1e36 sqrt()

To avoid any miscalculations we recommend adjusting the implementation such that it correctly handles the input value .Recommendation: 2

From dev team:Update:

This was intentionally introduced. The gas cost of checking if a number is 2, a highly unlikely input, was deemed to be too severe.

QSP-19 Blocked Addresses Can Still Deposit & Withdraw

Severity: Undetermined

FixedStatus:

, ,File(s) affected: BlacklistAndTimeFilter.sol GalleonDeposit.sol GalleonExchangeInterface.sol

Blocked addresses cannot swap, but they can still deposit into the pool, receive LP tokens, and withdraw assets.Description:

Clarify whether this is intentional or not. Otherwise, modify , , and to
prevent blocked addresses from interacting with the smart contract in these ways.
Recommendation: BlacklistAndTimeFilter.sol GalleonDeposit.sol GalleonExchangeInterface.sol

From dev team:Update:

: Example filter contract has been amended to filter based on , providing a device to block OFAC deposits.• Deposit msg.sender

: As a non-custodial mechanism, we cannot in any way block withdrawals.• Withdraw

QSP-20 The Mints 10x More TokensGalleonPool.constructor()

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: GalleonPool.sol

The instruction on L111: inside the mints 10 times more Galleon Pool Tokens (GLNPL) than the amount
of ETH it is receiving. This behavior is not documented and it is unclear if it is correct/intended or not.
Description: _mint(msg.sender, msg.value*10); GalleonPool.constructor()

Either document this behavior in the specification and user-facing documentation, or fix the code such that the same amount of GLNPL is minted as the amount of ETH
received.
Recommendation:

From dev team:Update:

This was an intentional choice made to sever any implicit link between ETH and Galleon Pool tokens. Pool tokens will not, in general, directly correspond to any number of ETH in the
pool.

Adherence to Best Practices

1. Some functions have no comments. We recommend that each function have at least a short description of its purpose, its input parameters and output values, if any.

2. Some functions and contracts which do have comments right before the body are not using the , which is recommended as a best practice.Solidity NatSpec format

https://docs.soliditylang.org/en/v0.8.0/natspec-format.html

3. Magic numbers should be replaced by named constant and the names of such constants should provide the semantics of the value. The following instances of magic
numbers have been encountered in the code:

on L85 in2000 contracts/GalleonDeposit.sol•

on L113 in86400 contracts/GalleonDeposit.sol•

on L151, L153, L163 in18 contracts/GalleonPool.sol•

on L242 in100 contracts/GalleonPool.sol•

on L111, L153, L163 in10 contracts/GalleonPool.sol•

on L176 in432000 contracts/GalleonPool.sol•

on L67 in `contracts/GalleonExchangeInterface.sol500•

on L122, L222, L229 in10000 contracts/GalleonExchangeInterface.sol•

on L197 in1e4 contracts/GalleonExchangeInterface.sol•

on L207, L221, L228 in1e10 contracts/GalleonExchangeInterface.sol•

4. Use a instead of for the state variable inside the contract if you want to reduce gas costs for the functions
that operate on .

mapping EnumerableSet.AddressSet assetSet GalleonPool
assetSet

5. Inconsistent use of vs . Replace all usages of to .uint uint256 uint uint256

6. Wrap L182 of : in an in order to reduce gas costs as indicated
.

GalleonPool.sol delete assets[token].removalTime if (assets[token].removalTime > 0) {}
here

7. The function might be better re-named as .GalleonPool.recordUnlockedDeposit() mintUnlockedDeposit()

8. There is no check corresponding to the comment on GalleonPool::L154 However, this should not be a very serious
issue since the token balances can be escaped before calling .

// Don't deposit a token before upserting it…
GalleonPool.upsertAsset()

Test Results

Test Suite Results

We note that 38 tests are passing and 1 test is expected to fail by design.

% npx hardhat test

·----------------------------|-------------·
| Contract Name · Size (Kb) │
·····························|··············
| SafeERC20 · 0.08 │
·····························|··············
| Address · 0.08 │
·····························|··············
| EnumerableSet · 0.08 │
·····························|··············
| Sqrt · 0.08 │
·····························|··············
| UniERC20 · 0.08 │
·····························|··············
| TestSqrt · 0.32 │
·····························|··············
| MockOracle · 1.19 │
·····························|··············
| GalleonEscapeContract · 1.73 │
·····························|··············
| ERC20 · 2.88 │
·····························|··············
| GalleonDeposit · 3.33 │
·····························|··············
| BlacklistAndTimeFilter · 3.87 │
·····························|··············
| MockToken · 4.38 │
·····························|··············
| GalleonExchangeInterface · 10.33 │
·····························|··············
| GalleonPool · 13.70 │
·----------------------------|-------------·

Exchange Function Test
Deployment

✓ Can deploy
✓ Starts with correct invariant

ETH alone operations
✓ Can deposit ETH alone correctly
✓ Can deposit ETH for 1 day correctly

Add Token
✓ Cannot swap to OFAC blocked address
✓ Cannot ETH->REP with too high min buy amount
✓ Can ETH->REP with ETH attached and transferred
✓ Cannot REP->USDC if USDC not valid token
✓ Cannot REP->ETH if nothing transferred
✓ Can ETH->REP even if selling too much ETH
✓ sellTokenForEth: Can trade REP into a pool with 0 REP
✓ Can ETH->REP after attaching ETH to call
✓ Can swap between two tokens
✓ Can swap from ETH after adding tokens
✓ withdrawInto correctly from 3-token pool
✓ withdrawInto correctly from 2-token pool
✓ deposit ETH alone for 1 day correctly in 3-token pool that has both ETH and REP
✓ deposit ETH alone for 1 day correctly in 2-token pool that has both ETH and REP
✓ Can add demonstration token
✓ Can modify demonstration token
✓ Has same invariant prior to adding demonstration tokens
✓ Has correct invariant after adding some demonstration tokens
✓ Can add a second token
✓ Can deposit ETH alone correctly into a pool with 2 tokens
✓ Can deposit ETH alone for 1 day correctly into a pool with 2 tokens

SQRT tests
✓ Can sqrt 0
✓ Can sqrt 1

1) Can sqrt 2
✓ Can sqrt 3
✓ Can sqrt 4
✓ Can sqrt 9
✓ Can sqrt 1000000000000
✓ Can sqrt 1000000000000000000
✓ Can sqrt 100000000000000000000
✓ Can sqrt 1000000000000000000000000
✓ Can sqrt 1000000000000000000000000000000
✓ Can sqrt 2000000000000000000
✓ Can sqrt 2000000000000000001
✓ Can sqrt 1999999999999999999

·--|---------------------------|---------------|-----------------------------·
| Solc version: 0.8.3 · Optimizer enabled: true · Runs: 10000 · Block limit: 12450000 gas │
···|···························|···············|······························

https://ethereum.stackexchange.com/questions/41576/is-it-cheaper-to-delete-or-ignore-obsolete-mappings

| Methods │
·····························|·······················|·············|·············|···············|···············|··············
| Contract · Method · Min · Max · Avg · # calls · eur (avg) │
·····························|·······················|·············|·············|···············|···············|··············
| GalleonDeposit · deposit · 97145 · 228734 · 166158 · 30 · - │
·····························|·······················|·············|·············|···············|···············|··············
| GalleonDeposit · unlockVestedDeposit · - · - · 28938 · 12 · - │
·····························|·······················|·············|·············|···············|···············|··············
| GalleonExchangeInterface · sellEthForToken · 111443 · 112503 · 112119 · 6 · - │
·····························|·······················|·············|·············|···············|···············|··············
| GalleonExchangeInterface · sellTokenForEth · - · - · 114361 · 4 · - │
·····························|·······················|·············|·············|···············|···············|··············
| GalleonExchangeInterface · sellTokenForToken · - · - · 127776 · 2 · - │
·····························|·······················|·············|·············|···············|···············|··············
| GalleonExchangeInterface · setPoolAddress · 35890 · 35902 · 35901 · 50 · - │
·····························|·······················|·············|·············|···············|···············|··············
| GalleonExchangeInterface · withdraw · 71629 · 166227 · 102819 · 12 · - │
·····························|·······················|·············|·············|···············|···············|··············
| GalleonExchangeInterface · withdrawInto · 121778 · 188506 · 155694 · 7 · - │
·····························|·······················|·············|·············|···············|···············|··············
| GalleonPool · upsertAsset · 50814 · 152299 · 145057 · 28 · - │
·····························|·······················|·············|·············|···············|···············|··············
| MockToken · mint · 70495 · 70519 · 70507 · 42 · - │
·····························|·······················|·············|·············|···············|···············|··············
| MockToken · transfer · 34409 · 51533 · 46004 · 31 · - │
·····························|·······················|·············|·············|···············|···············|··············
| TestSqrt · emitSqrt · 22571 · 25829 · 23846 · 28 · - │
·····························|·······················|·············|·············|···············|···············|··············
| Deployments · · % of limit · │
···|·············|·············|···············|···············|··············
| BlacklistAndTimeFilter · - · - · 1018663 · 8.2 % · - │
···|·············|·············|···············|···············|··············
| GalleonExchangeInterface · 2420887 · 2420899 · 2420898 · 19.4 % · - │
···|·············|·············|···············|···············|··············
| GalleonPool · 4579917 · 4579929 · 4579928 · 36.8 % · - │
···|·············|·············|···············|···············|··············
| MockOracle · 384019 · 384043 · 384031 · 3.1 % · - │
···|·············|·············|···············|···············|··············
| MockToken · 1101625 · 1101649 · 1101635 · 8.8 % · - │
···|·············|·············|···············|···············|··············
| TestSqrt · - · - · 123985 · 1 % · - │
·--|-------------|-------------|---------------|---------------|-------------·

38 passing (16s)
1 failing

1) SQRT tests
Can sqrt 2:

AssertionError: Expected "2" to be equal 1
at Context.<anonymous> (test/Sqrt.js:18:32)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)

Code Coverage

Branch coverage of some of the core contracts in this project is too low. We strongly recommend writing a more comprehensive test suite in order to ensure that all the
functionality and use-cases of this project are properly tested.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 81.73 45.45 61.76 80

BlacklistAndTimeFilter.sol 41.18 0 23.08 35 … 65,69,73,77

GalleonDeposit.sol 100 70 100 100

GalleonEscapeContract.sol 33.33 0 50 33.33 19,20

GalleonExchangeInterface.sol 93.9 55 85.71 94.05 61,62,66,67,68

GalleonPool.sol 73.97 40 62.86 72.5 … 306,310,313

contracts/libraries/ 63.16 83.33 83.33 65

AggregatorInterface.sol 100 100 100 100

ApprovalInterface.sol 100 100 100 100

Sqrt.sol 0 100 50 14.29 … 26,27,28,30

UniERC20.sol 92.31 83.33 100 92.31 39

contracts/mocks/ 55.56 100 50 55.56

MockOracle.sol 66.67 100 50 66.67 20

MockToken.sol 75 100 75 75 29

SqrtMock.sol 0 100 0 0 15,19

All files 79.11 51.28 62.2 77.82

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

08a16b0896bfc8e089c5d59e41ac311442041e3cf289b2d4bf66cad6b1be4745 ./contracts/BlacklistAndTimeFilter.sol

9a70be44f34cf4835c673e03ed83bf3601ded3915f10a4d17084138e6fe5322d ./contracts/GalleonExchangeInterface.sol

681005dc920a9722fb3458b7c9011150fe72b1683ffbe8d6cb981b53a5d30c89 ./contracts/GalleonEscapeContract.sol

7b9091c7bce767aa0b61c98da9ae9d118ea43ea585d436104b889679085ef489 ./contracts/GalleonDeposit.sol

a915ef3b19f059c4d3410727cf636c6946999d533f3d37b3c1c386decf7276ea ./contracts/GalleonPool.sol

1356eab4d685c1bf929493e45551554ed060363577633fbe11c462553bc801d6 ./contracts/libraries/UniERC20.sol

e31f421ce08e14689caeeb60e0071dd0fa45d4e8bec4799d909b42cf99a78b33 ./contracts/libraries/AggregatorInterface.sol

9e9f4ae154b1b668d5d1475382cb0d85013d4d9f3b85c13a6c76bebda8c2d0c9 ./contracts/libraries/Sqrt.sol

8d266ca9b20f910ec460380b9dfc4622fa5d50b9e7f972810b7b765ecc40595c ./contracts/libraries/ApprovalInterface.sol

10b2b7713cfa02502811c539b2ec61bdd49590ea51f2134d6e89c3f1538fc743 ./contracts/mocks/MockToken.sol

a8fd3a0936a228d2298e1f7b355dd0dc726a5eb8c014b14779a138ff1a7d3972 ./contracts/mocks/SqrtMock.sol

2ff2257c3027ae517e5fda65fc3c494dbf53a9f4f7b844a32e1401839b0ffdce ./contracts/mocks/MockOracle.sol

Tests

09a55815ab003e7a3feef9956d02b002820e16070869f5d52d514e39e9341f53 ./test/Exchange.js

dab5c2271cb5b011411d33e3d8a4f892404ea58777e085f2d8cb4e055a0eb901 ./test/Sqrt.js

Changelog

2021-05-05 - Initial report based on commit hash• 0dff47e

2021-05-25 - Report updated according to commit hash• 72f2dad

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the
adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,
and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract
security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment
services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum
Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our
commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;
however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes
no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.
These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the
content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as
described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or
operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.
Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that
could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of
products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Clipper Audit

